ABSTRACT We have isolated a laboratory strain of Chironomus samoensis in which determination of the anteroposterior egg polarity is disturbed. Most conspicuous is the spontaneous formation of ‘double abdomen’ embryos where head and thorax are replaced by a mirror image of the abdomen. Such double abdomens are found in about half of the egg clusters in this strain, which we call the spontaneous double abdomen (sda) strain as opposed to the normal (N) strain. Also observed in the sda strain, although less frequently, are ‘double cephalon’ embryos showing a mirrorimage duplication of cephalic segments in the absence of thorax and abdomen. Moreover, embryos from the sda strain tend to form cells at the anterior pole resembling the pole cells at the posterior pole. Reciprocal crossings between the sda and the N strain indicate that the sda trait is inherited maternally. Spontaneous double abdomen formation is correlated with signs of disturbed egg architecture, including extruded yolk and detached cells. Double cephalons can also be generated by centrifuging embryos from the N strain, whereas centrifugation of sda embryos produces mostly double abdomens. Double abdomen formation can be induced experimentally by anterior u.v. irradiation of embryos from either strain. The sda trait and u.v. irradiation act in a synergistic fashion. The data suggest that the sda trait may be caused by one or more genomic mutations interfering indirectly with the activity of anterior determinants, i.e. cytoplasmic RNP particles necessary for the development of anterior segments. The sda defects may be ascribed to alterations in cytoskeletal components involved in anchoring anterior determinants and segregating them into anterior blastoderm cells.
Read full abstract