Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The intermediate medial mesopallium (IMM) in the domestic chick forebrain is critical for visual imprinting and contributes to molecular regulation of memory formation. We investigated the role of micro-RNAs (miRNAs) in such regulation. Twenty-four hours after training, miRNA spectra in the left IMM were compared between chicks with high preference scores (strong memory for imprinting stimulus), and chicks with low preference scores (weak memory for imprinting stimulus). Using criteria of significance and expression level, we chose gga-miR-130b-3p for further study and found that down-regulation correlated with learning strength. No effect was detected in posterior nidopallium, a region not involved in imprinting. We studied two targets of gga-miR-130b-3p, cytoplasmic polyadenylation element binding proteins 1 (CPEB-1) and 3 (CPEB-3), in two subcellular fractions (P2 membrane-mitochondrial and cytoplasmic) of IMM and posterior nidopallium. Only in the left IMM was a learning-related effect observed, in membrane CPEB-3. Variances from the regression with preference score and untrained chicks suggest that, in the IMM, gga-miR-130b-3p level reflects a predisposition, i.e. capacity to learn, whereas P2 membrane-mitochondrial CPEB-3 is up-regulated in a learning-specific way.