Abstract

ObjectivesIt has been widely reported that long non‐coding RNAs (lncRNAs) can participate in multiple biological processes of human cancers. lncRNA HLA complex group 11 (HCG11) has been reported in human cancers as a tumour suppressor. This study focused on investigating the function and mechanism of HCG11 in glioma.Materials and methodsBased on The Cancer Genome Atlas (TCGA) data set and qRT‐PCR analysis, the expression pattern of HCG11 was identified in glioma samples. The mechanism associated with HCG11 downregulation was determined by mechanism experiments. Gain‐of‐function assays were conducted for the identification of HCG11 function in glioma progression. Mechanism investigation based on the luciferase reporter assay, RIP assay and pull‐down assay was used to explore the downstream molecular mechanism of HCG11. The role of molecular pathway in the progression of glioma was analysed in accordance with the rescue assays.Results HCG11 was expressed at low level in glioma samples compared with normal samples. FOXP1 could bind with HCG11 and transcriptionally inactivated HCG11. Overexpression of HCG11 efficiently suppressed cell proliferation, induced cell cycle arrest and promoted cell apoptosis. HCG11 was predominantly enriched in the cytoplasm of glioma cells and acted as a competing endogenous RNAs (ceRNAs) by sponging micro‐496 to upregulate cytoplasmic polyadenylation element binding protein 3 (CPEB3). CEPB3 and miR‐496 involved in HCG11‐mediated glioma progression.Conclusions HCG11 inhibited glioma progression by regulating miR‐496/CPEB3 axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.