Decadal oscillations of the ice cover in the Barents Sea are examined for the period since 1950. They are highly correlated with atmospheric circulation when that circulation has an anomalous low pressure over the Barents Sea and Eurasian Basin, while the ice cover is weakly correlated with local air temperature. A feedback mechanism between Barents Sea ice and the atmospheric circulation is suggested; increased cyclonic wind-stress curl reduces cold Arctic flow to the Barents Sea and reduces the sea ice. The reduced ice cover encourages heat flux from the Barents Sea to the atmosphere, tending to reinforce the low pressure. This positive feedback amplifies the oscillations of the air–ice–ocean system driven by external forcing with relatively weak decadal variability. A two-level ocean model, which is driven by prescribed buoyancy flux and wind stresses, confirms that Arctic outflow to the Barents Sea decreases during a cyclonic wind stress.
Read full abstract