The world is presently confronted with the twin crisis of resource restriction and environmental degradation. The search for solutions that promise a harmonious correlation with sustainable development, energy conservation, efficiency, and environmental preservation has become highly important. The main purpose of innovative studies on fuel refinement and combustion engines is to improve fuel properties by adding fuel additives. In this study, the impact of Titanium dioxide, TiO2, nanoparticles solution blended with diesel fuel on the performance and emission characteristics of four-stroke combustion engine OM 364 EU III, manufactured by IDEM Co and licensed by Daimler Benz, has been investigated. The selection of TiO2 nanoparticles is based on the easy access in the market and the gap recognized; in previous literature, these nanoparticles were added to biodiesel or n-butanol blends. The proposed combined fuel in this study contains 2.5 ppm TiO2 nanoparticles dissolved in 1200 [ml] water and added to 60 [Lit] base diesel fuel. The results of the aforementioned combined fuel have been compared with the base diesel fuel. It has been observed that applying nano-additives improves the mechanical performance of the diesel engine, such as power, torque, brake-specific fuel consumption, and thermal efficiency. Moreover, soot, unburned hydrocarbons, and carbon monoxide have declined by 2.78%, 3.55%, and 3.32%, respectively, due to TiO2 nanoparticles' catalytic effect on fuel combustion. However, the amount of NOx has increased up to 3.09% because of the high cycle temperature.
Read full abstract