Hepatitis D virus (HDV) significantly influences the progression of liver diseases. Through clinical observations and database analyses, it has been established that patients coinfected with HDV and hepatitis B virus (HBV) experience accelerated progression toward cirrhosis, hepatocellular carcinoma (HCC), and liver failure compared to those infected solely with HBV. A higher viral load correlates with increased replicative activity, enhanced infectivity, and more severe disease manifestations. In this study, we use HDV gRNA-sensitive semiconducting polymer dots (Pdots) as the nanoprobes for the quantitative analysis of HDV copy number variations. The surface of the Pdots is engineered with a clamp design that includes a pair of reporter sequences, protection sequences, and capture sequences tailored to the conserved sequence length of the HDV genome. The capture sequence, comprising leading and trailing chains, specifically binds to the gRNA of the target virus. The protection sequence shields the Pdots from external interference, while the reporter sequence detects the presence of target gRNA through the degradation of fluorescent dye Cy5.5dt. We demonstrate the effectiveness of this assay in a stably transfected cell line derived from HepG2-HDV cells and its translational application in clinical samples from patients. Additionally, this nanobiosensor can accurately detect gRNA at femtomolar (fM) levels, a sensitivity unachievable by previously reported methods. This novel virus quantification system offers significant potential for clinical and virological applications, enhancing screening, early diagnosis, and personalized treatment strategies.
Read full abstract