This study begins by conducting side milling experiments on SKD11 using tungsten carbide TiAlN-coated end mills to compare the surface roughness performance between two combinations of milling process parameters (feed rate and radial depth of cut), along with three ultrasonic-assisted methods (rotary, dual-axis, and rotary combined with dual-axis). The results suggest that the rotary (z-axis oscillation) ultrasonic-assisted method may provide better performance. Subsequently, this superior ultrasonic-assisted method was applied both with and without laser locally preheating assistance, respectively. Using a Taguchi orthogonal array, milling process parameters (spindle speed, feed rate, and radial depth of cut) were planned for experiments with the same cutting tool and the workpiece just mentioned above. The surface roughness serves as the objective function while being constrained by cutting-tool life. The characteristics of the smaller-the-better in the Taguchi method were applied to determine the optimal combination of process parameters. Based on the optimal milling process parameters obtained and the superior hybrid-assisted method adopted, milling experiments were repeatedly performed to collect the data on cutting force and cutting-tool wear. Feature engineering was performed on the cutting force signals, and different domain characteristics from both the time and frequency domains were extracted. Hereafter, feature selection by random forest and data standardization were further applied to feature extractions, and the data processing was thus completed. For the processed data, a cutting-tool wear prediction model was constructed by ensemble learning. This method leverages various machine learning regression models, including decision tree, random forest, extremely randomized tree, light gradient boosting machine, extreme gradient boosting, AdaBoost, stochastic gradient descent, support vector regression, linear support vector regression, and multilayer perceptron. After hyper-parameter tuning, the ensemble voting regression prediction was performed based on these ten mentioned models. The experimental results demonstrate that the ensemble voting regression model surpasses the performance of each individual machine learning regression model. In addition, this regression model achieves a coefficient of determination (R2) of 0.94576, a root mean square error (RMSE) of 0.24348, a mean squared error (MSE) of 0.05928, and a mean absolute error (MAE) of 0.18182. Therefore, the ensemble learning approach has been proven to be a feasible and effective method for monitoring cutting-tool wear.