Abstract

High-feed milling (HFM) represents a progressive manufacturing technology that has recently found widespread application across various industries. HFM is characterized by high machining speed, reduced cycle times, increased overall productivity, and increased tool life. Due to its versatility, HFM is a suitable technology for the application of various materials. The study deals with experimental analysis of cutting forces, machined surface integrity, and statistical evaluation in high-feed machining. In the present study, nickel-copper-based alloy (Monel) was chosen as the machined material, employing HFM with a monolithic ceramic milling cutter. The Monel material is characterized by its excellent mechanical properties and chemical resistance in harsh environments. During machining, cutting forces were recorded in three mutually perpendicular directions. This paper delves into the analysis of the impact of the depth of cut (ap), width of cut (ae), and lead-in angle (ε). The chosen evaluation characteristics encompass the tool load, primary profile, and the attained roughness of the machined surface. It is noteworthy that the technology under consideration predominantly aligns with the roughing phase of the manufacturing process. Additionally, the investigation incorporates a statistical analysis of the response surface pertaining to the cutting force components, namely Fx, Fy, Fz, and the resultant cutting force F.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.