Ru(II)-diimine complexes covalently attached near the heme active site of P450 BM3 enzymes have been used to rapidly inject electrons and drive selective C-H functionalization upon visible light irradiation. Herein, we have generated a series of hybrid P450 BM3 enzymes containing a photosensitizer of general formula [Ru(4,4'-X2bpy)2(PhenA)]2+ where X = Cl, H, tBu, Me OPhe, OMe, or NMe2, bpy = 2,2'-bipyridine, and PhenA = 5-acetamido-1,10-phenanthroline. We then probed the effect of electron-withdrawing and -donating groups at the para position of the 4,4'-X2bpy ligands on the corresponding hybrid enzymes photocatalytic activity. A 3-fold improvement in initial reaction rate was noted when varying the substituent from Cl to tBu, however, the reaction rates decrease thereafter with the more electron donating groups. In order to rationalize those effects, we investigated the variation of the substituent on the photophysical properties of the corresponding [Ru(4,4'-X2bpy)2(bpy)]2+ model complexes. Several linear correlations were established between the E(III/II) potential, the MLCT emission, and absorption energies as well as the logarithm of the luminescence quenching rate vs the summative Brown-Okamoto parameter (Σσp+). Moreover, a downward curved Hammett plot is observed with the hybrid enzyme initial reaction rate revealing mechanistic details about the overall light-driven enzymatic process.