The past several years has witnessed a sharp increase in the number of scientists and researchers who have attached great importance to studying Dye sensitized solar cells (DSSCs) because of its low cost and potential high photoelectric conversion efficiency. There are two main factors that influence the photoelectric conversion efficiency of dye sensitized solar cells. One is the low photon absorption rate of solar cells, and other one is the low transmission rate of the photo-generated electrons through the thick nanocrystalline film. So in order to further research and improve efficiency, an accurate model using COMSOL Multiphysics is investigated to reveal the photoresponse and current transport processes of DSSC. Specifically, an optical model is studied to determine how much the solar energy each cell takes in, and an electrical model is investigated to determine how much the overall efficiency. Besides, three adjusted micro/nanostructures of DSSCs have been built for improving the efficiency. The study shows that a more suitable structure can collect more solar energy and improve the electronic diffusion efficiency so as to improve the overall photoelectric conversion efficiency of DSSC.
Read full abstract