Purpose Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is to design a high-performance power supply with a compact structure for excimer lamps in electronics application. Design/methodology/approach To design a high-performance power supply with a compact structure remains a challenge for excimer lamps in electronics application, a current-source type power supply in a single stage with power factor correction (PFC) is proposed. It consists of an excitation voltage generation unit and a PFC unit. By planning the modes of the excitation voltage generation unit, a bipolar pulse excitation voltage with a high rising and falling rate is generated. And a high power factor (PF) on the AC side is achieved by the interaction of a non-controlled rectifier and two inductors. Findings The experimental results show that not only a high-frequency and high-voltage bipolar pulse excitation voltage with a high average rising and falling rate (7.51GV/s) is generated, but also a high PF (0.992) and a low total harmonic distortion (5.54%) is obtained. Besides, the soft-switching of all power switches is realized. Compared with the sinusoidal excitation power supply and the current-source power supply, the proposed power supply in this paper can take advantage of the potential of excimer lamps. Originality/value A new high-performance power supply with a compact structure for DBD type excimer lamps is proposed. The proposed power supply can work stably in a wide range of frequencies, and the smooth regulation of the discharge power of the excimer lamp can be achieved by changing the switching frequency. The ideal excitation can be generated, and the soft switching can be realized. These features make this power supply a key player in the outstanding performance of the DBD excimer lamps application.