Abstract

An LCL-T resonant converter (LCL-T RC) is shown to behave as a current source when operated at resonant frequency. A detailed analysis of the LCL-T RC for this property is presented. Closed-form expressions for converter gain, component stresses, and the condition for converter design optimized for minimum size of resonant network is derived. A design procedure is illustrated with a prototype 200-W 20-A current-source power supply and experimental results are presented. The LCL-T RC as a current source offers many advantages such as easy parallel operation and low circulating currents at light load. Additionally, with appropriate phase shift in paralleled modules, the peak-peak ripple in output current is reduced and the ripple frequency is increased, reducing filtering requirements. The leakage inductance of a transformer can be advantageously integrated into the resonant network. These merits make the topology applicable in various applications such as magnet power supply, capacitor charging power supply, laser diode drivers, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.