Many proteins and peptides can aggregate into amyloid fibrils with high-ordered and cross-β rich structure characteristics. Amyloid deposition is a common feature of neurodegenerative diseases called amyloidosis. Various natural polyphenolic compounds such as curcumin exhibited antiamyloidogenic activities, but less researches were focused on the metal complexes of these compounds. In this study, the inhibitory effects of gallium curcumin (Ga(cur)3), indium curcumin (In(cur)3), and vanadyl curcumin (VO(cur)2) on the amyloid fibrillation of hen egg white lysozyme (HEWL) have been investigated. Moreover, the details of binding interactions of these metal complexes with HEWL have been explored. The results of fluorescence quenching analyses revealed that In(cur)3 and VO(cur)2 have much higher binding affinities than Ga(cur)3 toward HEWL. The interactions of these metal complexes were accompanied by partial conformational changes in the tertiary structure of HEWL. The kinetic curves of the fibrillation process demonstrated that In(cur)3 and VO(cur)2 have higher inhibitory effects than Ga(cur)3 on the amyloid fibrillation of HEWL. The strength of binding to HEWL is completely in accordance with inhibitory activities of these metal complexes of curcumin.
Read full abstract