Soil quality indices (SQI) used for assessing soil degradation are often developed using additive scoring functions. However, these SQI may lack reference values for interpreting their outputs and the capacity to differentiate changes in specific variables. To overcome these limitations, this study introduces SQI using Log Response Ratios (LRR) as measures of size effects caused by land use in physical, chemical, and microbiological soil quality indicators. LRR vectors projected 2D polygons with condensed change measures along their perimeters. This method was tested in andosols within the southeastern region of Antioquia, Colombia. These soils were subjected to contrasting stages of degradation determined by the extent of A-horizon removal due to land use practices. This study shows that mining and agriculture have detrimental effects on soil organic carbon and water contents, and that size effects vary significantly between land uses (p < 0.05). Microbiological features also exhibit distinct size effects, such as populations of culturable mesophilic bacteria and fungi, microbial basal respiration, spore density of arbuscular mycorrhizal fungi (AMF), their diversity, and total glomalin-related soil proteins (p < 0.05). The SQI proposed exhibited a negative correlation with SQI computed from scoring additive functions either considering the entire dataset (R2 = 0.87) or a minimum dataset (R2 = 0.90). This approach underscores the utility of using LRR geometrical analysis to assess global soil quality differences among land uses (p < 0.01), offering a visual, quantifiable representation of the effects of each land use over specific soil quality indicators.
Read full abstract