Natural convection is commonly used as a means of heat transfer in many practical products because it is highly cost-effective. The development of simulation tools for this type of application is generally accompanied by several critical issues, including high-temperature differences, rapid turnaround demand, and complex geometries. Under conditions of natural convection with high-temperature differences, the density of the medium is variable but the flow speed is low. Therefore, a compressible solver, i.e., Roe scheme developed by P.L. Roe in 1981, must be combined with a preconditioning method that can make the Roe scheme available at low speeds to allow the above situation to be addressed. The building cube method is adopted to make our method suitable for massive parallelization systems, which can reduce the calculation and turnaround times immensely. An immersed boundary method for compressible flows combined with a fast, easy to implement, and robust interpolation method is developed to handle flows with complex immersed geometries. The results show that the program described here is suitable for application to product design and analysis because of its wide applicability to natural convection with high-temperature differences, its capacity to handle complex geometries, and its feasibility for use in massive parallelization systems.
Read full abstract