Abstract

Prescribed burning is increasingly recommended to control encroaching shrublands in the Mediterranean area. The aims of this paper are to analyze the fuel structural characteristics of Spartium junceum and how they influence fire behaviour during prescribed burning. Two winter–spring prescribed burns were conducted in 2009 and 2011. Fuel load and structure of S. junceum shrubs were assessed using the Cube Method, and shrub 3-D models were built using the FIRE PARADOX FUEL MANAGER software. Allometric equations to estimate S. junceum fuel load were developed. During burning, thermocouples measured temperature variations, which were then analyzed relative to fuel characteristics. Fuel load components and distribution were strictly related to shrub height; in tall shrubs, most of the fine fuel was more than 1.5 m aboveground. Due to fuel vertical discontinuity, not all shrubs were burned in the fires, but wind increased fire sustainment and fuel consumption. Maximum temperatures (over 800 °C) and residence times were positively related to fuel load. S. junceum tall shrublands represent high hazard formations due to their elevated fuel load, mostly in fine fuel fractions. Vertical discontinuity among fuel strata limits fire propagation in mild weather conditions. Winter–spring prescribed burning cannot eliminate S. junceum shrublands, but do create shrub cover discontinuity. As S. junceum has fire-adapted morphological traits, a single burn is insufficient to control it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call