One-dimensional (1D) zinc oxide (ZnO) nanostructures are considered to be promising materials for use in thin film solar cells because of their high light harvesting and charge collection efficiencies. We firstly report enhanced photovoltaic performances in Cu2ZnSnS4 (CZTS) thin film solar cells prepared using ZnO nanostructures. A CdS-coated, vertically well-aligned ZnO nanorod (NR) array was prepared via a hydrothermal reaction and nanocrystal layer deposition (NCLD) and was used as a transparent window/buffer layer in a CZTS thin film photovoltaic. A light absorber CZTS thin film was prepared on the CdS/ZnO NRs in air by depositing a non-toxic precursor solution that was annealed in two steps at temperatures up to 250 °C. The crystallized CZTS phase completely infiltrated the CdS/ZnO NR array. The nanostructured ZnO array provided improved light harvesting behavior compared to a thin film configuration by measuring UV–vis transmittance spectroscopy. The prepared CZTS/CdS/ZnO NR device exhibited a solar energy conversion efficiency of 1.2%, which is the highest efficiency yet reported for nanostructured superstrate CZTS solar cells.