This paper describes the mechanical characteristics of microscale single crystal silicon (SCS) and UV-LIGA nickel (Ni) films used for microelectromechanical systems (MEMS). A compact tensile tester, operated in an atomic force microscope (AFM), was developed for accurate evaluation of Young's modulus, tensile strain and tensile strength of microscale SCS and UV-LIGA Ni specimens. SCS specimens with nominal dimensions of 20 μm in thickness, 50 μm in width and 600 μm in length were prepared by a conventional photolithography and etching process. UV-LIGA Ni specimens, with a thickness of 15 μm, a width of 50 μm and a length of 600 μm in nominal dimensions, were also fabricated by electroplating using a UV thick photoresist mould. All specimens have line patterns on their specimen gauge section to measure axial elongation under tensile loading. The SCS specimens showed a linear stress–strain response and fractured in a brittle manner, whereas the UV-LIGA Ni specimens showed elastic–inelastic deformation behaviour. Young's modulus of SCS and UV-LIGA Ni specimens obtained from tensile tests averaged 169.2 GPa and 183.6 GPa, respectively, close to those of bulk materials. However, the tensile strength of both materials showed a larger value than the bulk materials: 1.47 GPa for the SCS and 0.98 GPa for the Ni specimens. Yield stress and breaking elongation of UV-LIGA Ni specimens were also quite different from those of the bulk Ni because of the specimen size effect on inelastic properties.
Read full abstract