Abstract Owing to twisting of filament fiber bundle, the structure and consequently various parameters and properties of a fiber bundle are changed. The aim of the work is to verify the effect of multifilament yarn twist (or twist coefficient) on selected mechanical properties such as multifilament tenacity, breaking elongation, and coefficient of fiber stress utilization in the yarn. Furthermore, the influence of twist on structural parameters such as the angle of peripheral fibers, the packing density, and the substance cross-sectional area of fiber bundle is observed. Two multifilament yarns with different filament cross-section shape and material were used for the experiment. Experimentally obtained data was compared with the known model dependencies derived decades ago based on the helical model. It can be stated that multifilament yarn retraction can be predicted based on the angle of peripheral fibers using the Braschler’s model. The coefficient of fiber stress utilization in the multifilament yarn determined experimentally corresponds with a theoretical curve, constructed according to Gégauff and Neckář, in the area of Koechlin’s twist coefficient α > 54 ktex1/2 m−1. Results as well as possible causes of deviations of experimental data from the theoretical one are discussed in this work.