Abstract

We have compared the mechanical properties and the degradation of the critical current after uniaxial tensile loading at room temperature (RT) and at 77 K of ex situ and in situ MgB2 wires. The strain that the wires can withstand without degradation is at 77 K substantially higher than at RT. In order to explain the mechanical behavior of the wires, the lattice distortions of the different wire constituents and their texture have been measured simultaneously with the composite wire stress and strain in a high-energy synchrotron beamline. The different MgB2 microstructure in both wire types is revealed in filament cross sections prepared by the focused-ion-beam technique and in fracture surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.