The novel glutamic acid crosslinked chitosan membrane (CsG) was fabricated and tested for its adsorption capabilities for the removal of multiple pollutants like Cr (VI), cyanide, fluoride and diclofenac sodium from wastewater. This fabricated CsG membrane was characterized by various techniques like FT-IR, SEM, EDX and XRD, BET to assess its structural, compositional and morphological properties. The working parameters studied by batch experiments were solution pH, CsG dose, contact time, pollutant concentration and solution temperature. The CsG membrane exhibited maximum adsorption capacity of 410.7 mg/g, 310.2 mg/g, 14.3 mg/g, 132.7 mg/g for Cr (VI), cyanide, fluoride and diclofenac respectively. The validation of the operational parameters was performed by Response Surface Methodology (RSM). The experimental data fitted well with Langmuir isotherm model and followed pseudo second order kinetics for all the four targeted contaminants. The spontaneity of the process was checked by thermodynamics studies. The high partition coefficients of 7669 L/kg Cr(VI), 23,309 L/kg (CN−), 649 L/kg (F−) and 2613 L/kg (DFC) are the indicators of excellent attractive interaction between CsG membrane and target toxicants. The CsG membrane showed efficient regenerative adsorption properties up to 5 adsorption-desorption cycles. Overall, the developed novel CsG membrane promised as an effective material for the removal of multiple number of pollutants from water.
Read full abstract