Conjunctive use of saline/non-saline irrigation waters is generally aimed at minimizing yield losses and enhancing flexibility of cropping, without much alteration in farming operations. Recommendation of location-specific suitable conjunctive water use plans requires assessment of their long-term impacts on soil salinization/sodification and crop yield reductions. This is conventionally achieved through long-term field experiments. However such impact evaluations are site specific, expensive and time consuming. Appropriate decision support systems (DSS) can be time-efficient and cost-effective means for such long-term impact evaluations. This study demonstrates the application of one such (indigenously developed) DSS for recommending best conjunctive water use plans for a, rice-wheat growing, salt affected farmer's field in Gurgaon district of Haryana (India). Before application, the DSS was extensively validated on several farmers and controlled experimental fields in Gurgaon and Karnal districts of Haryana (India). Validation of DSS showed its potential to give realistic estimates of root zone soil salinity (with R = 0.76-0.94; AMRE = 0.03-0.06; RMSPD = 0.51-0.90); sodicity (with R = 0.99; AMRE = 0.02; RMSPD = 0.84) and relative crop yield reductions (AMRE = 0.24), under existing (local) resource management practices. Long term (10 years) root zone salt build ups and associated rice/wheat crop yield reductions, in a salt affected farmer's field, under varied conjunctive water use scenarios were evaluated with the validated DSS. It was observed that long-term applications of canal (CW) and tube well (TW) waters in a cycle and in 1:1 mixed mode, during Kharif season, predicted higher average root zone salt reductions (2-9%) and lower rice crop yield reductions (4-5%) than the existing practice of 3-CW, 3-TW, 3-CW. Besides this, long-term application of 75% CW mixed with 25% TW, during Rabi season, predicted about 17% lower average root-zone salt reductions than the cyclic applications of (1-CW, 1-TW, 2-CW) and (2-CW, 1-TW, 1-CW, i.e., existing irrigation strategy). However, average wheat crop yield reductions (16-17%) simulated under all these strategies were almost at par. In general, cyclic-conjunctive water use strategies emerged as better options than the blending modes. These results were in complete confirmation with actual long-term conjunctive water use experiments on similar soils. It was thus observed that such pre-validated tools could be efficient means for designing, local resource and target crop yield-specific, appropriate conjunctive water use plans for irrigated agricultural lands.