Several countries around the world are facing the issue of freshwater availability, where agriculture is highly dependent on irrigation, consuming 70% of this vital resource. Water availability is the most limiting factor for the crop production sector and one of the main regulators of the spatial distribution of plants. It is noted that in recent years, the methods of irrigation water application have been improved. Currently, research is directed towards irrigation strategies that reduce water applications. A partial root drying (PRD) technique involves irrigating one-half of the root zone while leaving the other half in relatively dry soil. This method is used in the production of various crops, such as potatoes and cotton. However, the mechanism of PRD, including the physiological and molecular biological processes involved, is not fully understood. In this study, tomato plants were treated with PRD and nitrogen (N) top-dressing. The results showed that PRD could significantly increase the fruit yield, photosynthetic activities, nitrate reductase activity, and fruit quality in the tomato plants, and PRD could also promote the concentrations of oxygen species (O2−), malondialdehyde (MDA) and proline contents, and activities of antioxidant enzymes. In addition, PRD could enhance stress resistance by increasing disease resistance and NP1 and DRED3 antioxidant enzyme activity. Tomato plants treated with PRD compared to the control showed high photosynthetic activity, high yield, better quality of production, and low leaf blight incidence. Overall, the results indicate that PRD is a feasible approach that could be effectively utilized in tomato fields to improve plant growth and production compared with the control.
Read full abstract