The present context of the electric industry, characterized by competitive markets, privatization, and regulatory of technical requirements forces the power utilities to optimize their asset management practices and develop the requisite decision plans techno-economically. Practically approaching, this paper devises a new support tool based on a multiattribute decision making (MADM) framework in combination with analytical hierarchical process (AHP) to determine the most critical components of power transmission systems. Measure of system-wide reliability performance, outage cost, marginal clearing prices demonstrative of market fairness, and network losses are among the attributes considered in this paper for component criticality assessment. With the frequent existence of qualitative and quantitative attributes, the proposed approach can effectively help to deal with the existent uncertainty and conventional judgment vagueness. As verified in a case study on the IEEE Reliability Test System (IEEE-RTS), the proposed framework introduces its applicability and efficiency for the practical asset management optimizations in electric utilities.
Read full abstract