One of the tools for building new fixed-point results is the use of symmetry in the distance functions. The symmetric property of metrics is particularly useful in constructing contractive inequalities for analyzing different models of practical consequences. A lot of important invariant point results of crisp mappings have been improved by using the symmetry of metrics. However, more than a handful of fixed-point theorems in symmetric spaces are yet to be investigated in fuzzy versions. In accordance with the aforementioned orientation, the idea of Presic-type intuitionistic fuzzy stationary point results is introduced in this study within a space endowed with a symmetrical structure. The stability of intuitionistic fuzzy fixed-point problems and the associated new concepts are proposed herein to complement their corresponding concepts related to multi-valued and single-valued mappings. In the instance where the intuitionistic fuzzy-set-valued map is reduced to its crisp counterparts, our results complement and generalize a few well-known fixed-point theorems with symmetric structure, including the main results of Banach, Ciric, Presic, Rhoades, and some others in the comparable literature. A significant number of consequences of our results in the set-up of fuzzy-set- and crisp-set-valued as well as point-to-point-valued mappings are emphasized and discussed. One of our findings is utilized to assess situations from the perspective of an application for the existence of solutions to non-convex fractional differential inclusions involving Caputo fractional derivatives with nonlocal boundary conditions. Some nontrivial examples are constructed to support the assertions and usability of our main ideas.
Read full abstract