Traumatic joint injury is known to cause cartilage deterioration and osteoarthritis. In order to study the mechanical mechanism of damage evolution on articular cartilage, taking the fresh porcine articular cartilage as the experimental samples, the creep experiments of the intact cartilages and the cartilages with different depth defect were carried out by using the noncontact digital image correlation technology. And then, the creep constitutive equations of cartilages were established. The results showed that the creep curves of different layers changed exponentially and were not coincident for the cartilage sample. The defect affected the strain values of the creep curves. The creep behavior of cartilage was dependent on defect depth. The deeper the defect was, the larger the strain value was. The built three-parameter viscoelastic constitutive equation had a good correlation with the experimental results and could predict the creep performance of the articular cartilage. The creep values of the microdefective cartilage in the damaged early stage were different from the diseased articular cartilage. These findings pointed out that defect could accelerate the damage of cartilage. It was helpful to study the mechanical mechanism of damage evolution.