Abstract

Statement of problemThe incidence of fracture in a single-implant overdenture base increases in the region adjacent to the fulcrum implant. PurposeThe purpose of this in vitro study was to evaluate the effect of bidirectional woven electrical glass (E-glass) fiber reinforcements on the fatigue resistance of a simulated single LOCATOR–retained overdenture. Material and methodsTest specimens with a centrally positioned metal housing for a LOCATOR stud attachment were fabricated from autopolymerizing acrylic resin. Specimens for the control group were fabricated without glass fiber reinforcements. The 4L group specimens had 4 layers of E-glass fiber weaves and were divided according to the fiber location into the following 3 subgroups: 4L-A with 4 fiber layers above the metal housing; 4L-N with 4 fiber layers adjacent to the metal housing; and 4L-A+4L-N with 4 fiber layers above and 4 fiber layers adjacent to the housing. Specimens were stored in distilled water for 1 week at 23 °C before cyclic fatigue testing at 10 000 cycles by using a staircase approach (n=12). The results were analyzed with 1-way ANOVA and the Tukey multiple comparisons post hoc analysis (α=.05). A 2-way ANOVA (α=.05) was conducted to detect the effect of fatigue cyclic loading and the position of the fiber layers and their interaction on the fatigue resistance. ResultsThe results of the investigated compressive fatigue limits for the test groups were 190 ±15.9 N for the control group, 265 ±15.9 N for the 4L-A subgroup, 220 ±15.9 N for the 4L-N subgroup, and 275 ±15.9 N for the 4L-A+4L-N subgroup. A nonsignificant difference was found for creep values between the control group and reinforced subgroups (P>.05). The postfatigue flexural strength values in the 4L-A and 4L-A+4L-N subgroups were significantly higher than those in the control group (P<.001) and the 4L-N subgroup (P=.004 and P=.005). However, no significant difference was found in postfatigue flexural strength between the control group and the 4L-N subgroup (P=.828). ConclusionsPlacing 4 layers of bidirectional E-glass fiber weaves above the metal housing can increase the fatigue resistance and the postfatigue flexural strength of single LOCATOR–retained overdentures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.