This study examines the performance of mat foundations in 13 blocks of eight-story concrete-walled residential buildings. Topographic monitoring bolts were used to monitor the slab’s construction, which was 0.35 m thick and comprised an area of 225 m2. Using the collected data, a retro-analysis of the modulus of elasticity was conducted to obtain the geotechnical parameters for forecasting the settlement using the elasticity theory. A nonlinear approach for construction modeling and soil–structure interactions showed that the earthworks at the start of construction had a significant role in settling. Blocks in landfills settled faster than those in land-cut zones. The partial execution of building levels was found to be critical in terms of angular distortions and stresses in the concrete slab. The partial lifting of the foundation plate was confirmed in blocks with partial building floor execution, demonstrating the importance of assessing the foundation’s behavior at this stage. The modulus of elasticity dropped as construction progressed, with landfill parts being particularly vulnerable. Creep settlements contributed significantly, accounting for about 20% of the total settlements in some blocks. The numerical staged construction model accurately replicated the behaviors observed in the monitoring data, confirming the hypothesis of the partial raising of the foundation during the building process, which resulted in higher angular distortions. Based on the results obtained, the authors strongly recommend that the simultaneous consideration of soil–structure interactions and construction effects be commonly used in foundation designs.