Abstract

This study investigates the quasi-static bearing stress-settlement response of shallow foundations in monolithic tire derived aggregate (TDA) layers having a total thickness of 3 m using a large-scale container and loading system. Tests were performed on footings having a range of widths, embedment depths, shapes, and loading inclinations. In tests where tilting was restricted, a clear bearing capacity was not observed for settlements up to 1.2B, where B is the footing width, but in tests where tilting was permitted bearing capacity was observed between settlements of 0.2B to 0.7B. Surface settlements indicate a dragdown response of the TDA adjacent to the footing extending out to more than 3B from the footing center, while settlement plates beneath the footing indicate a zone of influence of induced settlements of 14% at a depth of 4B. While bearing capacity theories for frictional geomaterials provided a reasonable prediction of the bearing capacity of footings in TDA for most tests, the corresponding settlements may be excessive for engineering applications. Accordingly, a correlation was developed between the theoretical bearing capacity and bearing stress at a settlement of 0.1B. A test with sustained loading indicates slight creep settlements with some stress dependency with magnitudes consistent with past studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call