We have investigated the utilisation of four analogues of creatine by cytosolic Creatine Kinase (CK), using 31P-NMR in the porcine carotid artery, and by mitochondrial CK (Mt-CK), using oxygen consumption studies in isolated heart mitochondria and skinned fibres. Porcine carotid arteries were superfused for 12 h with Krebs-Henseleit buffer at 22°C, containing 11 mM glucose as substrate, and supplemented with either 20 mM β-guanidinopropionic acid (β-GPA), methyl-guanidinopropionic acid (m-GPA), guanidinoacetic acid (GA) or cyclocreatine (cCr). All four analogues entered the tissue and became phosphorylated by CK as seen by 31P-NMR. Inhibition of oxidative metabolism by 1 mM cyanide after accumulation of the phosphorylated analogue resulted in the utilisation of PCr, β-GPA-P, GA-P and GA-P over a similar time course (∼ 2 h), despite very different kinetic properties of these analogues in vitro. cCr-P was utilised at a significantly slower rate, but was rapidly dephosphorylated in the presence of both 1 mM iodoacetate and cyanide (to inhibit both glycolysis and oxidative metabolism respectively). The technique of creatine stimulated respiration was used to investigate the phosphorylation of the analogues by Mt-CK. Isolated mitochondria were subjected to increasing [ATP], whereas skinned fibres received a similar protocol with increasing [ADP]. There was a significant stimulation of respiration by creatine and cCr in isolated mitochondria (decreased K m and increased V max vs control), but none by GA, mGPA or β-GPA (also in skinned fibres), indicating that these latter analogues were not utilised by Mt-CK. These results demonstrate differences in the phosphorylation and dephosphorylation of creatine and its analogues by cytosolic CK and Mt-CK in vivo and in vitro.
Read full abstract