We describe an implementation of a vector quantization codebook design algorithm based on the frequencysensitive competitive learning artificial neural network. The implementation, designed for use on high-performance computers, employs both multitasking and vectorization techniques. A C version of the algorithm tested on a CRAY Y-MP8/864 is discussed. We show how the implementation can be used to perform vector quantization, and demonstrate its use in compressing digital video image data. Two images are used, with various size codebooks, to test the performance of the implementation. The results show that the supercomputer techniques employed have significantly decreased the total execution time without affecting vector quantization performance.
Read full abstract