Abstract
We describe an implementation of a vector quantization codebook design algorithm based on the frequencysensitive competitive learning artificial neural network. The implementation, designed for use on high-performance computers, employs both multitasking and vectorization techniques. A C version of the algorithm tested on a CRAY Y-MP8/864 is discussed. We show how the implementation can be used to perform vector quantization, and demonstrate its use in compressing digital video image data. Two images are used, with various size codebooks, to test the performance of the implementation. The results show that the supercomputer techniques employed have significantly decreased the total execution time without affecting vector quantization performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.