This paper presents an optimized method for evaluating and enhancing the crashworthiness of an electric vehicle (EV) battery frame, leveraging finite element model (FEM) simulations with minimal computational effort. The study begins by utilizing a publicly available LS-DYNA model of a conventional Toyota Camry, simplifying it to include only the structures relevant to a side pole crash scenario. The crash simulations adhere to FMVSS214 and UNR135 standards, while also extending to higher speeds of 45 km/h to evaluate performance under more severe conditions. A dummy frame with virtual mass is integrated into the model to approximate the realistic center of gravity (COG) of an EV and to facilitate visualization. Based on the side pole crash results, critical parameters are extracted to inform the development of load cases for the EV battery. The proposed battery frame, constructed from aluminum, houses a representative volume of battery cells. These cells are defined through a homogenization process derived from individual and pack of cell crash tests. The crashworthiness of the battery frame is assessed by measuring the overall intrusion along the Y-axis and the specific intrusion into the representative volume. This method not only highlights the challenges of adapting conventional vehicle platforms for EVs or for dual compatibility with both conventional and electric powertrains but also provides a framework for developing and testing battery frames independently. By creating relevant load cases derived from full vehicle crash data, this approach enables battery frames to be optimized and evaluated as standalone components, offering a method for efficient and adaptable battery frame development. This approach provides a streamlined yet effective process for optimizing the crash performance of EV battery systems within existing vehicle platforms.
Read full abstract