PurposeMagnetic resonance imaging (MRI) is a common technique in image-guided neurosurgery (IGN). Recent research explores the integration of methods like ultrasound and tomography, among others, with hyperspectral (HS) imaging gaining attention due to its non-invasive real-time tissue classification capabilities. The main challenge is the registration process, often requiring manual intervention. This work introduces an automatic, markerless method for aligning HS images with MRI.MethodsThis work presents a multimodal system that combines RGB-Depth (RGBD) and HS cameras. The RGBD camera captures the patient’s facial geometry, which is used for registration with the preoperative MR through ICP. Once MR-depth registration is complete, the integration of HS data is achieved using a calibrated homography transformation. The incorporation of external tracking with a novel calibration method allows camera mobility from the registration position to the craniotomy area. This methodology streamlines the fusion of RGBD, HS and MR images within the craniotomy area.ResultsUsing the described system and an anthropomorphic phantom head, the system has been characterised by registering the patient’s face in 25 positions and 5 positions resulted in a fiducial registration error of 1.88 ± 0.19 mm and a target registration error of 4.07 ± 1.28 mm, respectively.ConclusionsThis work proposes a new methodology to automatically register MR and HS information with a sufficient accuracy. It can support the neurosurgeons to guide the diagnosis using multimodal data over an augmented reality representation. However, in its preliminary prototype stage, this system exhibits significant promise, driven by its cost-effectiveness and user-friendly design.