Silicon (Si) is a possible sensor material for photon counting detectors (PCDs). A major drawback of Si is that roughly two-thirds of x-ray interactions in the diagnostic energy range are Compton scattering. Because Compton scattering is an energy-insensitive process, it is commonly assumed that Compton events retain little spectral information. To quantify how much information can be recovered from Compton scattering events in models of Si PCDs. We built a simplified model of Si interactions including two interaction mechanisms: photoelectric effect and Compton scattering. We considered three different binning options that represent strategies for handling Compton events: in Compton censoring, all events under 38keV (the maximum energy possible from Compton scattering for a 120keV incident photon) were discarded; in Compton counting, all events between 1 and 38keV were placed into a single bin; in Compton binning, all events were placed into energy bins of uniform width. These were compared to the ideal detector, which always recorded the correct energy (i.e., 100% photoelectric effect). Every photon was assumed to interact once and only once with Si, and the energy bin width was 5keV. In the primary analysis, the Si detector was irradiated with a 120kV spectrum filtered by 30cm of water, with 99.5% of the arriving spectrum above 38keV so that there was good separation between photoelectric effect and Compton scattering, and the figures of merit were the Cramér-Rao lower bound (CRLB) of the variance of iodine and water basis material decomposition images, as well as the CRLB of virtual monoenergetic images (i.e., linear combinations of material images) that maximize iodine CNR or water CNR. We also constructed a local linear estimator that attains the CRLB. In secondary analyses, we applied other sources of spectral distortion: (1) a nonzero minimum energy threshold; (2) coarser, 10keV energy bins; and (3) a model of charge sharing. With our chosen spectrum, 67% of the interactions were Compton scattering. Consistent with this, the material decomposition variance for the Compton censoring model, averaged over both basis materials, was 258% greater than the ideal detector. If Compton events carried no spectral information, the Compton counting model would show similar variance. Instead, its basis material variance was 103% greater than the ideal detector, implying that Compton counts indeed carry significant spectral information. The Compton binning model had a basis material variance 60% greater than the ideal detector. The Compton binning model was not affected by a 5keV minimum energy threshold, but the variance increased from 60% to 107% when charge sharing was included and to 78% with coarser energy bins. For optimized CNR images, the average variance was 149%, 12%, and 10% higher than the ideal detector for the Compton censoring, counting, and binning models, reinforcing the hypothesis that Compton counts are useful for detection tasks and that precise energy assignments are not necessary. Substantial spectral information remains after Compton scattering events in silicon PCDs.
Read full abstract