This paper presents an investigation into the effect of stitch density on the delamination toughening and self-healing properties of carbon–epoxy laminates. The stitches provide the laminate with the synergistic combination of high mode I interlaminar fracture toughness to resist delamination cracking and healing properties to repair delamination damage. The results show that the fracture toughness of the laminate increased with stitch density, due to higher traction (crack closure) loads exerted by the stitches bridging the delamination. During the healing process these bridging stitches first melt and then flow into the delamination, leading to self-healing with full restoration of the mode I fracture toughness. Furthermore, the stitches were capable of repairing delamination cracks many times larger than the original size of the stitches. The effect of stitch density on the healing process of delamination cracks and restoration of fracture toughness was found to remain approximately the same under multiple repair operations.
Read full abstract