Drying-induced cracking is widely encountered in nature and is of fundamental interest in industrial applications. During desiccation, the evolution of water content is nonlinear. Considering the inhomogeneous procedure of desiccation, it is worth considering whether water content will affect the crack pattern formation. To address this concern, in this paper, we report an experimental investigation on the effect of water content on the failure mode in drying colloidal films. A distinct failure transition from random cracking to curling is found when the initial water content increases gradually. When the water content is below a critical value for given film thickness, random desiccation cracking driven by shrinkage is observed. Beyond this critical water content, the film curls with the advent of several main cracks. It is also found that the critical water content corresponding to the transition point depends on the film thickness. In order to qualitatively interpret the experimental observation, a theoretical model is established by adopting the fracture mechanics based on the energy method. The model is found to agree well with the experimental results, elucidating the effects of initial water content on the crack patterns and the transition of failure modes.
Read full abstract