Abstract

Soil desiccation cracking is important for a range of engineering applications, but the theoretical advancement of this process is less than satisfactory. In particular, it is not well understood how the crack spacing-to-depth ratio depends on soil material behaviour. In the past, two approaches, namely stress relief and energy balance, have been used to predict the crack spacing-to-depth ratio. The current paper utilises these two approaches to predict the approximate spacing-to-depth ratio of parallel cracks that form in long desiccating soil layers subjected to uniform tensile stress (or suction profile) while resting on a hard base. The theoretical developments have examined the formation of simultaneous and sequential crack patterns and have identified an important relationship between the stress relief and energy approaches. In agreement with experimental observations, it was shown that the spacing-to-depth ratio decreases with layer depth, and crack spacing generally increases with layer depth. The influence of the stiffness at the base interface indicated that decreasing the basal interface stiffness makes the crack spacing to increase in sequential crack formation. The experimental observations also show a decrease in cracking water content with the decrease in layer thickness, and this behaviour was explained on the basis of a critical depth concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.