The microstructure and sensitization behavior of high-silicon stainless steel containing 4.0 wt.% Si was studied after stabilization heat treatment followed by isothermal heat treatment. Isothermal heat treatment for 6 h was carried out on the alloy at two different temperatures, viz. 500 and 750 °C, after stabilization heat treatment at 950 °C. Phase fraction of the high-silicon stainless steel remained constant after isothermal heat treatment. Fine (Ti,C) precipitates of angular and spherical morphology were observed throughout the microstructure, in all the heat-treated sample conditions. Their number density was measured and related to the processing conditions that they were exposed to. Additionally, the presence of Cr and C was confirmed by compositional analysis, and they appeared at the grain boundary in the sample isothermally heat-treated at 750 °C for 6 h. Sensitization study of the heat-treated samples was carried out with the help of double-loop electrochemical potentiokinetic reactivation test in specially prepared acid etchant, and it was observed that degree of sensitization depended strongly on the formation of Cr-depleted zone along the grain boundary. Based on our study, we conclude that stabilization heat treatment significantly reduces the sensitization behavior, even for steel containing significant fraction of Si.
Read full abstract