To increase strength and decrease density of traditional refractory high-entropy alloys (RHEAs), the MoNbVTa0.5Crx RHEAs were synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). The effect of Cr content on microstructure and mechanical properties of the MoNbVTa0.5Crx RHEAs was systematically studied. The results showed the addition of Cr could refine the microstructure, decrease density and increase strength of RHEAs. The microstructure of the sintered alloy was composed of BCC phase and a small amount of oxide phase (Ta2VO6), and Ta2OV6 (200) has a semi-coherent relationship with BCC phase (110), with a lattice mismatch degree of 7.34 %. The compressive yield strength of the MoNbVTa0.5Crx RHEAs initially increased and then decreased with increasing Cr content. The MoNbVTa0.5Cr0.75 RHEAs demonstrated the best mechanical properties, and the compressive yield strength and ultimate compressive strength at room temperature were 3180 MPa and 3596 MPa, respectively, which were far higher than traditional WNbMoTaV RHEAs. And the density of MoNbVTa0.5Cr0.75 RHEAs was 21 % lower than that of sintered WNbMoTaV RHEAs. The strengthening mechanism of sintered MoNbVTa0.5Crx RHEAs involved O/C atoms interstitial solid solution strengthening, grain boundary strengthening, and metal atoms solid solution strengthening, while the contribution of oxide precipitation strengthening was negligible.
Read full abstract