In the context of Concentrated Solar Power (CSP) technology, this paper presents a comparison between the Parabolic Trough Collector (PTC) and the Linear Fresnel Collector (LFC), considering both evacuated and non-evacuated receiver tubes. The comparison was carried out in terms of the Levelized Cost of Electricity (LCOE) considering a reference year and four locations in the world, characterized by different levels of direct normal irradiation (DNI) from 2183 kWh/m2/year to 3409 kWh/m2/year. The LCOE depends on economic parameters and on the net energy generated by a plant on an annual basis. The latter was determined by a steady-state 1D model that solved the energy balance along the receiver axis. This model required computing the incident solar power and heat losses. While the solar power was calculated by an optical ray-tracing model, heat losses were computed by a lumped-parameter model developed along the radial direction of the tube. Since the LFC adopted a secondary concentrator, no conventional correlation was applicable for the convective heat transfer from the glass cover to the environment. Therefore, a 2D steady-state CFD model was also developed to investigate this phenomenon. The results showed that the PTC could generate a higher net annual energy compared to the LFC due to a better optical performance ensured by the parabolic solar collector. Nevertheless, the difference between the PTC and the LFC was lower in the non-evacuated tubes because of lower heat losses from the LFC receiver tube. The economic analysis revealed that the PTC with the evacuated tube also achieved the lowest LCOE, since the higher cost with respect to both the LFC system and the non-evacuated PTC was compensated by the higher net energy yield. However, the non-evacuated LFC demonstrated a slightly lower LCOE compared to the non-evacuated PTC since the lower capital cost of the non-evacuated LFC outweighed its lower net annual energy yield. Finally, a sensitivity analysis was conducted to assess the impact on the LCOE of the annual optical efficiency and of the economic parameters. This study introduces key technical parameters in LFC technology requiring improvement to achieve the level of productivity of the PTC from a techno-economic viewpoint, and consequently, to fill the gap between the two technologies.
Read full abstract