Coupling the methanol synthesis with the dehydrogenation of cyclohexane to benzene in a co-current flow, catalytic fixed-bed double-membrane reactor configuration in order to simultaneous pure hydrogen and methanol production was considered theoretically. The thermally coupled double-membrane reactor (TCDMR) consists of two Pd/Ag membranes, one for separation of pure hydrogen from endothermic side and another one for permeation of hydrogen from feed synthesis gas side (inner tube) into exothermic side. A steady-state heterogeneous model is developed to analyze the operation of the coupled methanol synthesis. The proposed model has been used to compare the performance of a TCDMR with conventional reactor (CR) and thermally coupled membrane reactor (TCMR) at identical process conditions. This comparison shows that TCDMR in addition to possessing advantages of a TCMR has a more favorable profile of temperature and increased productivity compared with other reactors. The influence of some operating variables is investigated on hydrogen and methanol yields. The results suggest that utilizing of this reactor could be feasible and beneficial. Experimental proof of concept is needed to establish the validity and safe operation of the recuperative reactor.
Read full abstract