Abstract

This work considers three concentric tube reactors to prepare pure hydrogen, especially applicable in fuel cell technologies, with zero CO2 emission. Hydrogen and methanol production rates are compared in a thermally coupled exothermic and endothermic reactor for co-current and counter-current modes. Synthesis of methanol is coupled with dehydrogenation of cyclohexane as a high content hydrogen carrier (7.1 wt%). The efficient coupling of exothermic and endothermic reactions increases the profitability of operation of the reactor, reduces the size of reactor and decreases the operational and capital costs. By inserting a hydrogen-perm selective membrane into the reactor configuration, hydrogen can permeate selectively into the membrane, and hence, the third tube receives hydrogen. The simulation results are compared with the corresponded results for an industrial methanol fixed-bed reactor, which operates under the same feed conditions. The influence of some operating variables is investigated on methanol and hydrogen yields during the performance of reactor. The results show higher methanol conversion, as the same as conventional reactor, and hydrogen for co-current flow. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.