ObjectiveCompared with other regions in the world, the transmission characteristics of the COVID-19 epidemic in Africa are more obvious, has a unique transmission mode in this region; At the same time, the data related to the COVID-19 epidemic in Africa is characterized by low data quality and incomplete data coverage, which makes the prediction method of COVID-19 epidemic suitable for other regions unable to achieve good results in Africa. In order to solve the above problems, this paper proposes a prediction method that nests the in-depth learning method in the mechanism model. From the experimental results, it can better solve the above problems and better adapt to the transmission characteristics of the COVID-19 epidemic in African countries.MethodsBased on the SIRV model, the COVID-19 transmission rate and trend from September 2021 to January 2022 of the top 15 African countries (South Africa, Morocco, Tunisia, Libya, Egypt, Ethiopia, Kenya, Zambia, Algeria, Botswana, Nigeria, Zimbabwe, Mozambique, Uganda, and Ghana) in the accumulative number of COVID-19 confirmed cases was fitted by using the data from Worldometer. Non-autoregressive (NAR), Long-short term memory (LSTM), Autoregressive integrated moving average (ARIMA) models, Gaussian and polynomial functions were used to predict the transmission rate β in the next 7, 14, and 21 days. Then, the predicted transmission rate βs were substituted into the SIRV model to predict the number of the COVID-19 active cases. The error analysis was conducted using root-mean-square error (RMSE) and mean absolute percentage error (MAPE).ResultsThe fitting curves of the 7, 14, and 21 days were consistent with and higher than the original curves of daily active cases (DAC). The MAPE between the fitted and original 7-day DAC was only 1.15% and increased with the longer of predict days. Both the predicted β and DAC of the next 7, 14, and 21 days by NAR and LSTM nested models were closer to the real ones than other three ones. The minimum RMSEs for the predicted number of COVID-19 active cases in the next 7, 14, and 21 days were 12,974, 14,152, and 12,211 people, respectively when the order of magnitude for was 106, with the minimum MAPE being 1.79%, 1.97%, and 1.64%, respectively.ConclusionNesting the SIRV model with NAR, LSTM, ARIMA methods etc. through functionalizing β respectively could obtain more accurate fitting and predicting results than these models/methods alone for the number of confirmed COVID-19 cases in Africa in which nesting with NAR had the highest accuracy for the 14-day and 21-day predictions. The nested model was of high significance for early understanding of the COVID-19 disease burden and preparedness for the response.
Read full abstract