Purpose We sought to explore the feasibility of using the current co-planar Halcyon ring delivery system (RDS) with a novel multileaf collimator (MLC) aperture shape controller in delivering a single high dose of 30 Gy to solitary lung lesions via stereotactic body radiotherapy (SBRT). Materials and methods Thirteen non-small-cell lung cancer (NSCLC) patients previously treated with a single dose of 30 Gy to lung lesions via SBRT on the TrueBeam (6MV-FFF) using non-coplanar volumetric modulated arc therapy (VMAT) arcs were anonymized and replanned onto the Halcyon RDS (6MV-FFF) following RTOG-0915 single-fraction criteria. The Halcyon plans utilized a novel dynamic conformal arc (DCA)-based MLC-fitting approach before VMAT optimization with a user-defined aperture shape controller option. The clinical TrueBeam and Halcyon plans were compared via their protocol compliance, target conformity, gradient index, and dose to organs-at-risk (OAR). Treatment delivery efficacy and accuracy were assessed through end-to-end quality assurance (QA) tests on Halcyon and independent dose verification via in-house Monte Carlo (MC) second-check validation. Results All Halcyon lung SBRT plans met RTOG-0915 protocol's requirements for target coverage, conformity, and gradient indices, and maximum dose 2 cm away from the target (D2cm) while being statistically insignificant (p > 0.05) when compared to clinical TrueBeam plans. Additionally, Halcyon provided a similar dose to OAR except for the ribs, where Halcyon demonstrated a lower maximum dose (15.22 Gy vs 17.01 Gy, p < 0.001). However, Halcyon plans required a higher total monitor unit (8892 MU vs 7413 MU, p < 0.001), resulting in a higher beam modulation factor (2.96 MU/cGy vs 2.47 MU/cGy, p < 0.001) and an increase in beam-on time by a factor of 2.1 (11.11 min vs 5.3 min, p < 0.005). End-to-end QA measurements demonstrate that Halcyon plans were clinically acceptable with an average gamma passing rate of 99.8% for 2%/2mm criteria and independent MC 2nd checks within ±2.86%. Conclusion Our end-to-end testing and validation study demonstrates that by utilizing a DCA-based MLC aperture shape controller before VMAT optimization, Halcyon can be used for delivering a single dose of lung SBRT treatment. However, future improvements of Halcyon RDS are recommended to allow higher output rates, rotational couch corrections, and an integrated intrafraction motion management system that will further enhance Halcyon's capability for site-specific single dosage of SBRT.