Abstract

Stereotactic body radiotherapy (SBRT) treatment of oligometastatic lesions via single-isocenter/multi-target (SIMT) plan is more efficient than using multi-isocenter/multitarget SBRT. This study quantifies the spatial positioning accuracy of 2 commercially available LINAC systems for SIMT treatment pertaining to the potential amplification of error as a function of the target's distance-to-isocenter. We compare the Ring-Gantry Halcyon LINAC equipped with the fast iterative conebeam-CT (iCBCT) for image-guided SIMT treatment, and the SBRT-dedicated C-Arm TrueBeam with standard pretreatment CBCT imaging. For both systems, Sun Nuclear's MultiMet Winston-Lutz Cube phantom with 6 metallic BBs distributed at different planes up to 7 cm away from the isocenter was used. The phantom was aligned and imaged via CBCT, and then couch corrections were applied. To treat all 6 BBs, an Eclipse 10-field 3D-conformal Field-in-Field (2×2 cm2 MLC field to each BB) plan for varying gantry, collimator, and couch (TrueBeam only) positions was developed for both machines with 6MV-FFF beam. The plan was delivered through ARIA once a week. The EPID images were analyzed via Sun Nuclear's software for spatial positioning accuracy. On TrueBeam, the treatment plan was delivered twice: once with 3DoF translational corrections and once with PerfectPitch 6DoF couch corrections. The average 3D spatial positioning accuracy was 0.55 ± 0.30 mm, 0.54 ± 0.24 mm, and 0.56 ± 0.28 mm at isocenter, and 0.59 ± 0.30 mm, 0.69 ± 0.30 mm, and 0.70 ± 0.35 mm at 7 cm distance-to-isocenter for Halcyon, TrueBeam 3DoF, and TrueBeam 6DoF, respectively. This suggests there are no clinically significant deviations of spatial uncertainty between the platforms with the distance-to-isocenter. On both platforms, our weekly independent measurements demonstrated the reproducibility for less than 1.0 mm positional accuracy of off-axis targets up to 7 cm from the isocenter. Due to this, no additional PTV-margin is suggested for lesions within 7 cm of isocenter. This study confirms that Halcyon can deliver similar positional accuracy to SBRT-dedicated TrueBeam to off-axis targets up to 7 cm from isocenter. These results further benchmark the spatial uncertainty of our extensively used SBRT-dedicated TrueBeam LINAC for SIMT SBRT treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call