Abstract: Operculina turpethum (Linn.) Silva Manso belongs to the family convolvulaceae. It is an important plant in the Indian conventional system of medicine, which is extensively employed by different tribes in many countries to cure edema and painful conditions like arthritis, back pain, hyperlipidemia, diabetes mellitus, liver disorders, skin disorders, and regulation of bowel functions. The roots of O. turpethum (Linn.) were subjected to physicochemical and phytochemical standardization and chromatographic separation, which was accomplished by column chromatography, TLC, and HPTLC. Further, the acute toxicity, cytotoxic and anti-inflammatory activities of Operculina turpethum roots were estimated by in vivo and in vitro models. This study includes percentage yield of extraction and organoleptic evaluation, along with the analysis of its physicochemical investigations and preliminary phytochemical estimation. The isolation of active phytoconstituents was done by column chromatography, and the isolated compound was then exposed to TLC and HPTLC analysis. Cytotoxic activity was tested by WST-1 based cell viability assay on HepG2 cells. The anti-inflammatory activity of methanol extract (ME) was evaluated against inflammation occur by both in vitro and in vivo methods. The methanolic extract exhibited the presence of most of the phytoconstituents out of all the extracts. The phytoconstituent phytosterol, i.e., β-sitosterol, was isolated by column chromatography, identified, and quantified by TLC and HPTLC, which was liable for anti-inflammatory activity. The amount of β- sitosterol was estimated to be 14.09 μg in a 10.00 mg fraction of MEOT. MEOT was devoid of toxicity up to 2000 mg/kg in Wistar albino rats. It was analysed that in vitro anti-inflammatory activity of MEOT by egg albumin denaturation method exhibited an incredible decrement in turbidity and increased the percentage inhibition of albumin denaturation (60.52%) in MEOT treated group as compared with the control group. In egg albumin-induced edema in rats, MEOT at the dose of 400 mg/kg reduced the edema formation (3.03 ± 0.02) induced by egg albumin at 4th h. In cotton pellet-induced granuloma in rats, MEOT at the dose of 400 mg/kg displayed maximum granuloma inhibition (51.06%), which was similar to that of indomethacin. From the obtained findings, it is confirmed that O. turpethum contains β-sitosterol, which is responsible for potent anti-inflammatory activity without causing cytotoxicity to the plant. The results suggested that ME of O. turpethum roots had a high potential for application as an anti-inflammatory agent. The recognization and confirmation of the plant can be obtained from the study and will present data that is aidful in determining the quality and purity of a crude drug which further helps in preventing its adulteration.