The cotton plant is important since it provides raw materials for various industry branches. Even though cotton is generally drought-tolerant, it is affected negatively by long-term drought stress. The trial was conducted according to the applied experimental design as a completely randomized design (CRD) with three replications to determine a panel of 93 cotton genotypes' genotypic responses against drought under controlled conditions in 2022. All genotypes were watered with 80 mL-1 of water (100% irrigation, field capacity) until three true leaves appeared, and then water stress was applied at a limited irrigation of 75% (60 mL-1), 50% (40 mL-1), and 25% (20 mL-1) of the field capacity. After the trial terminated at 52 days, the cv. G56, G44, G5, and G86 in RL; G1, G56, G44, G86, G51, and G88 in RFW; advanced line G5, followed by the cv. G56, advanced line G44, G75, and the cv. G90 in RDW; G44, followed by G86, the cv. G56, and elite lines G13 and G5 in NLRs were observed as drought-tolerant genotypes, respectively, while G35, G15, G26, G67, and G56 in SL; G15, G52, G60, G31, and G68 in SFW; G35, G52, G57, G41, and G60 in SDW show the highest drought tolerance means, respectively. In conclusion, the commercial varieties with high means in roots, namely G86, G56, G88, and G90, and the genotypes G67, G20, G60, and G57 showing tolerance in shoots, are suggested to be potential parent plants for developing cotton varieties resistant to drought. Using the cultivars found tolerant in the current study as parents in a drought-tolerant variety development marker-assisted selection (MAS) plant breeding program will increase the chance of success in reaching the target after genetic diversity analyses are performed. On the other hand, it is highly recommended to continue the plant breeding program with the G44, G30, G19, G1, G5, G75, G35, G15, G52, G29, and G76 genotypes, which show high tolerance in both root and shoot systems.
Read full abstract