ABSTRACT Cortical spreading depolarization (CSD), a slowly propagating wave of transient cellular depolarization, is a reliable cortical response to various brain insults (stroke, trauma, seizures) and underlying mechanism of migraine aura. Little is known about CSD effects on brain network activity. Using undirected (mutual information, MI) and directed (transfer entropy, TE) measures, we studied the dynamics of cross-hemispheric connectivity associated with the development of unilateral CSD in freely behaving rats and the involvement of inhibitory transmission in mechanisms of the coupling changes. We show that the development of CSD in the cortex of one hemisphere is followed by the transient loss of undirected functional connectivity (MI) between ipsilateral and contralateral cortical regions. The post-CSD functional disconnection of the hemispheres was accompanied by an increase in driving force from an unaffected contralateral cortex to an affected one (TE). Mild cortical disinhibition produced by pretreatment with an inhibitory receptor blocking agent (penthylenetetrazole) did not affect CSD but attenuated (MI) or eliminated (TE) the CSD-induced connectivity changes. The effects of CSD on functional connectivity in awake rodents were similar at the individual and group levels, suggesting that the described connectivity response may be a promising network biomarker of CSD occurrence in patients.