Abstract
BackgroundRecent magnetic resonance imaging (MRI) studies have established that brain iron accumulation might accelerate cognitive decline in Alzheimer’s disease (AD) patients. Both normal aging and AD are associated with cerebral atrophy in specific regions. However, no studies have investigated aging- and AD-selective iron deposition-related cognitive changes during normal aging. Here, we applied quantitative susceptibility mapping (QSM) to detect iron levels in cortical signature regions and assessed the relationships among iron, atrophy, and cognitive changes in older adults.MethodsIn this Taizhou Imaging Study, 770 older adults (mean age 62.0 ± 4.93 years, 57.5% women) underwent brain MRI to measure brain iron and atrophy, of whom 219 underwent neuropsychological tests nearly every 12 months for up to a mean follow-up of 2.68 years. Global cognition was assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Domain-specific cognitive scores were obtained from MoCA subscore components. Regional analyses were performed for cortical regions and 2 signature regions where atrophy affected by aging and AD only: Aging (AG) -specific and AD signature meta-ROIs. The QSM and cortical morphometry means of the above ROIs were also computed.ResultsSignificant associations were found between QSM levels and cognitive scores. In particular, after adjusting for cortical thickness of regions of interest (ROIs), participants in the upper tertile of the cortical and AG-specific signature QSM exhibited worse ZMMSE than did those in the lower tertile [β\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\:\\beta\\:$$\\end{document} = -0.104, p = 0.026; β\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\:\\beta\\:$$\\end{document} = -0.118, p = 0.021, respectively]. Longitudinal analysis suggested that QSM values in all ROIs might predict decline in ZMoCA and key domains such as attention and visuospatial function (all p < 0.05). Furthermore, iron levels were negatively correlated with classic MRI markers of cortical atrophy (cortical thickness, gray matter volume, and local gyrification index) in total, AG-specific signature and AD signature regions (all p < 0.05).ConclusionAG- and AD-selective iron deposition was associated with atrophy and cognitive decline in elderly people, highlighting its potential as a neuroimaging marker for cognitive aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.